Linear-2 7

T:VV is injective,T:V×VFShow that ,T is an inner productSolution:v+u,wT=T(v+u),T(w)=T(v)+T(u),T(w)=T(v),T(w)+T(u),T(w)αv,uT=T(αv),T(u)=αT(v),T(u)=αT(v),T(u)=αv,uTv,uT=T(v),T(u)=T(u),T(v)=u,vTv,vT=T(v),T(v)0v,vT=0T(v),T(v)=0T(v)=0vker(T)T is injectiveker(T)={0},T is an inner product
Let V be an inner product spaceLet {v1,,vn}VProve or disprove: i=1nj=1nvi,vj0Proof:i=1nj=1nvi,vj=j=1ni=1nvi,vj=j=1ni=1nvi,vj==j=1nvj,i=1nvi=j=1nvj,i=1nvi=j=1nvj,i=1nvi=v,v0
Prove: v=0uV:v,u=0Let B be a basis of VProve: i[1,n]:v,vi=u,viv=uProof:Let uVv=0v,u=2v,u=v,u+v,uv,u=0uV:v,u=0u=vv,v=0v=0Proof:v,vi=u,vivu,vi=0Let wVw=i=1nαivivu,w=vu,i=1nαivi=i=1nαivi,vu=i=1nαivu,vi=0

Gram-Schmidt matrix

Let S={v1,,vn}VGSFn×n:(GS)ij=vi,vj
Prove: GS is non-invertibleS is a linear dependenceProof:Let GS be non-invertiblej=1nαjCj(GS)=0:j[1,n]:αj00=j=1nαjCj(GS)=j=1nαj(v1,vjv2,vjvn,vj)i[1,n]:j=1nαjvi,vj=0j=1nvi,αjvj=0j=1nαjvj,vi=j=1nαjvj,vi=0j=1nαjvju,vi=0u,u=j=1nαjvj,u=j=1nαjvj,u=0u=0i=1nαivi=0j[1,n]:αj0αj0S is a linear dependence