Cub11k's BIU Notes
Cub11k's BIU Notes
Assignments
Discrete-math
Discrete-math 1
Discrete-math 10
Discrete-math 11
Discrete-math 12
Discrete-math 2
Discrete-math 3
Discrete-math 4
Discrete-math 5
Discrete-math 6
Discrete-math 7
Discrete-math 8
Discrete-math 9
Infi-1
Infi-1 10
Infi-1 11
Infi-1 2
Infi-1 3
Infi-1 4
Infi-1 5
Infi-1 6
Infi-1 7
Infi-1 8
Infi-1 9
Linear-1
Linear-1 1
Linear-1 10
Linear-1 11
Linear-1 12
Linear-1 2
Linear-1 3
Linear-1 4
Linear-1 5
Linear-1 6
Linear-1 7
Linear-1 8
Linear-1 9
Linear-2
Linear-2 1
Lectures
Data-structures
Data-structures 1
Data-structures 2
Data-structures 3
Discrete-math
Discrete-math 10
Discrete-math 11
Discrete-math 12
Discrete-math 13
Discrete-math 14
Discrete-math 15
Discrete-math 16
Discrete-math 18
Discrete-math 19
Discrete-math 20
Discrete-math 21
Discrete-math 22
Discrete-math 23
Discrete-math 24
Discrete-math 25
Discrete-math 26
Discrete-math 3
Discrete-math 4
Discrete-math 5
Discrete-math 6
Discrete-math 7
Discrete-math 8
Discrete-math 9
Exam 2023 (2A)
Exam 2023 (2B)
Exam 2023 (A)
Exam 2023 (B)
Exam 2023 (C)
Exam 2024 (A)
Exam 2024 (B)
Exam 2024 (C)
Midterm
Infi-1
Exam 2022B (A)
Exam 2022B (B)
Exam 2023B (A)
Exam 2023B (B)
Exam 2024 (A)
Exam 2024 (B)
Exam 2025 (A)
Infi-1 10
Infi-1 12
Infi-1 13
Infi-1 14
Infi-1 15
Infi-1 16
Infi-1 17
Infi-1 19
Infi-1 20
Infi-1 21
Infi-1 22
Infi-1 23
Infi-1 24
Infi-1 25
Infi-1 26
Infi-1 5
Infi-1 6
Infi-1 7
Infi-1 9
Midterm
Theorems and proofs
Infi-2
Infi-2 1
Infi-2 10
Infi-2 11
Infi-2 12
Infi-2 13
Infi-2 14
Infi-2 15
Infi-2 16
Infi-2 17
Infi-2 2-3
Infi-2 3-4
Infi-2 5
Infi-2 6
Infi-2 7
Infi-2 8
Infi-2 9
Linear-1
Exam 2023 (B)
Exam 2023 (C)
Exam 2024 (A)
Exam 2024 (B)
Exam 2024 (C)
Exam 2025 (A)
Linear-1 11
Linear-1 12
Linear-1 13
Linear-1 4
Linear-1 5
Linear-1 6
Linear-1 7
Linear-1 8
Linear-1 9
Midterm
Random exams
Theorems and proofs
Linear-2
Linear-2 1
Linear-2 2
Linear-2 3
Linear-2 4
Linear-2 5
Linear-2 6
Linear-2 7
Linear-2 8
Seminars
CSI
CSI 2
Data-structures
Data-structures 1
Data-structures 2
Data-structures 3
Discrete-math
Discrete-math 1
Discrete-math 10
Discrete-math 11
Discrete-math 12
Discrete-math 2
Discrete-math 3
Discrete-math 4
Discrete-math 5
Discrete-math 6
Discrete-math 7
Discrete-math 8
Discrete-math 9
Infi-1
Infi-1 10
Infi-1 11
Infi-1 12
Infi-1 13
Infi-1 3
Infi-1 4
Infi-1 5
Infi-1 6
Infi-1 8
Infi-2
Infi-2 1
Infi-2 2
Infi-2 3
Infi-2 4
Infi-2 6
Infi-2 7
Infi-2 8
Linear-1
Linear-1 10
Linear-1 11
Linear-1 12
Linear-1 3
Linear-1 5
Linear-1 6
Linear-1 7
Linear-1 8
Linear-1 9
Linear-2
Linear-2 1
Linear-2 2
Linear-2 3
Linear-2 4
Linear-2 5
Linear-2 6
Linear-2 7
Templates
Lecture Template
Seminar Template
Home
Linear-2 7
T
:
V
→
V
is injective
⟨
,
⟩
T
:
V
×
V
→
F
Show that
⟨
,
⟩
T
is an inner product
Solution:
⟨
v
+
u
,
w
⟩
T
=
⟨
T
(
v
+
u
)
,
T
(
w
)
⟩
=
⟨
T
(
v
)
+
T
(
u
)
,
T
(
w
)
⟩
=
⟨
T
(
v
)
,
T
(
w
)
⟩
+
⟨
T
(
u
)
,
T
(
w
)
⟩
⟨
α
v
,
u
⟩
T
=
⟨
T
(
α
v
)
,
T
(
u
)
⟩
=
⟨
α
T
(
v
)
,
T
(
u
)
⟩
=
α
⟨
T
(
v
)
,
T
(
u
)
⟩
=
α
⟨
v
,
u
⟩
T
⟨
v
,
u
⟩
T
=
⟨
T
(
v
)
,
T
(
u
)
⟩
=
⟨
T
(
u
)
,
T
(
v
)
⟩
―
=
⟨
u
,
v
⟩
T
―
⟨
v
,
v
⟩
T
=
⟨
T
(
v
)
,
T
(
v
)
⟩
≥
0
⟨
v
,
v
⟩
T
=
0
⟺
⟨
T
(
v
)
,
T
(
v
)
⟩
=
0
⟺
T
(
v
)
=
0
⟺
v
∈
k
e
r
(
T
)
T
is injective
―
⟺
k
e
r
(
T
)
=
{
0
}
⟹
⟨
,
⟩
T
is an inner product
Let
V
be an inner product space
Let
{
v
1
,
…
,
v
n
}
⊆
V
Prove or disprove:
∑
i
=
1
n
∑
j
=
1
n
⟨
v
i
,
v
j
⟩
≥
0
Proof:
∑
i
=
1
n
∑
j
=
1
n
⟨
v
i
,
v
j
⟩
=
∑
j
=
1
n
∑
i
=
1
n
⟨
v
i
,
v
j
⟩
=
∑
j
=
1
n
⟨
∑
i
=
1
n
v
i
,
v
j
⟩
=
=
∑
j
=
1
n
⟨
v
j
,
∑
i
=
1
n
v
i
⟩
―
=
∑
j
=
1
n
⟨
v
j
,
∑
i
=
1
n
v
i
⟩
―
=
⟨
∑
j
=
1
n
v
j
,
∑
i
=
1
n
v
i
⟩
―
=
⟨
v
,
v
⟩
≥
0
Prove:
v
=
0
⟺
∀
u
∈
V
:
⟨
v
,
u
⟩
=
0
Let
B
be a basis of
V
Prove:
∀
i
∈
[
1
,
n
]
:
⟨
v
,
v
i
⟩
=
⟨
u
,
v
i
⟩
⟺
v
=
u
Proof:
Let
u
∈
V
v
=
0
⟹
⟨
v
,
u
⟩
=
⟨
2
v
,
u
⟩
=
⟨
v
,
u
⟩
+
⟨
v
,
u
⟩
⟹
⟨
v
,
u
⟩
=
0
∀
u
∈
V
:
⟨
v
,
u
⟩
=
0
⟹
u
=
v
⟨
v
,
v
⟩
=
0
⟹
v
=
0
Proof:
⟨
v
,
v
i
⟩
=
⟨
u
,
v
i
⟩
⟹
⟨
v
−
u
,
v
i
⟩
=
0
Let
w
∈
V
w
=
∑
i
=
1
n
α
i
v
i
⟨
v
−
u
,
w
⟩
=
⟨
v
−
u
,
∑
i
=
1
n
α
i
v
i
⟩
=
⟨
∑
i
=
1
n
α
i
v
i
,
v
−
u
⟩
―
=
∑
i
=
1
n
α
i
―
⟨
v
−
u
,
v
i
⟩
―
=
0
Gram-Schmidt matrix
Let
S
=
{
v
1
,
…
,
v
n
}
⊆
V
G
S
∈
F
n
×
n
:
(
G
S
)
i
j
=
⟨
v
i
,
v
j
⟩
Prove:
G
S
is non-invertible
⟺
S
is a linear dependence
Proof:
Let
G
S
be non-invertible
⟹
∃
∑
j
=
1
n
α
j
C
j
(
G
S
)
=
0
:
∃
j
∈
[
1
,
n
]
:
α
j
≠
0
⟹
0
=
∑
j
=
1
n
α
j
C
j
(
G
S
)
=
∑
j
=
1
n
α
j
(
⟨
v
1
,
v
j
⟩
⟨
v
2
,
v
j
⟩
⋮
⟨
v
n
,
v
j
⟩
)
∀
i
∈
[
1
,
n
]
:
⟹
∑
j
=
1
n
α
j
⟨
v
i
,
v
j
⟩
=
0
⟹
∑
j
=
1
n
⟨
v
i
,
α
j
―
v
j
⟩
=
0
⟹
∑
j
=
1
n
⟨
α
j
―
v
j
,
v
i
⟩
―
=
∑
j
=
1
n
⟨
α
j
―
v
j
,
v
i
⟩
―
=
0
⟹
⟨
∑
j
=
1
n
α
j
―
v
j
⏟
u
,
v
i
⟩
=
0
⟨
u
,
u
⟩
=
⟨
∑
j
=
1
n
α
j
―
v
j
,
u
⟩
=
∑
j
=
1
n
α
j
―
⟨
v
j
,
u
⟩
=
0
⟹
u
=
0
⟹
∑
i
=
1
n
α
i
―
v
i
=
0
∃
j
∈
[
1
,
n
]
:
α
j
≠
0
⟹
α
j
―
≠
0
⟹
S
is a linear dependence